import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
= pd.read_csv("data/data/qld_fuel.csv")
df print(df)
Unnamed: 0 SiteId Site_Name Site_Brand \
0 1 61290151 Liberty Surat Liberty
1 2 61290151 Liberty Surat Liberty
2 3 61290151 Liberty Surat Liberty
3 4 61291313 Lowes Mungindi Opt BP
4 5 61291313 Lowes Mungindi Opt BP
... ... ... ... ...
615972 615973 61478211 Metro Petroleum Walkerston Metro Fuel
615973 615974 61478211 Metro Petroleum Walkerston Metro Fuel
615974 615975 61478212 Pitt Stop Classic Café Independent
615975 615976 61478212 Pitt Stop Classic Café Independent
615976 615977 61478212 Pitt Stop Classic Café Independent
Sites_Address_Line_1 Site_Suburb Site_State Site_Post_Code \
0 61 Burrowes Street Surat QLD 4417
1 61 Burrowes Street Surat QLD 4417
2 61 Burrowes Street Surat QLD 4417
3 126 Barwon Street Mungindi QLD 4497
4 126 Barwon Street Mungindi QLD 4497
... ... ... ... ...
615972 2 Dutton St Walkerston QLD 4751
615973 2 Dutton St Walkerston QLD 4751
615974 34 Palm Ave Seaforth QLD 4741
615975 34 Palm Ave Seaforth QLD 4741
615976 34 Palm Ave Seaforth QLD 4741
Site_Latitude Site_Longitude Fuel_Type Price \
0 -27.151687 149.067742 Diesel 1999
1 -27.151687 149.067742 PULP 98 RON 2159
2 -27.151687 149.067742 Unleaded 1959
3 -28.973467 148.983829 Diesel 1990
4 -28.973467 148.983829 Unleaded 1920
... ... ... ... ...
615972 -21.160166 149.063728 Unleaded 1959
615973 -21.160166 149.063728 Unleaded 1989
615974 -20.899741 148.964986 Unleaded 2049
615975 -20.899741 148.964986 Unleaded 2039
615976 -20.899741 148.964986 Unleaded 2099
TransactionDateutc X_id
0 2023-10-12 21:56:00 NaN
1 2023-12-30 06:54:00 NaN
2 2023-12-30 06:54:00 NaN
3 2023-06-12 22:00:00 NaN
4 2023-06-12 22:00:00 NaN
... ... ...
615972 2023-09-20 05:14:00 NaN
615973 2023-09-25 08:08:00 NaN
615974 2023-04-09 04:15:00 NaN
615975 2023-04-09 04:24:00 NaN
615976 2023-09-25 06:26:00 NaN
[615977 rows x 14 columns]